

Medidor de gas de turbina TBQM

Aplicaciones

El medidor de gas de turbina TBQM es apto para su uso en la medición de transferencia de custodia de volúmenes de gas, especialmente gas natural en estaciones de transmisión de gas, en centrales eléctricas y estaciones urbanas, así como en diversos sectores industriales plantas donde se solicita una precisión de medición equivalente en la transferencia de custodia.

Características clave

- Tamaño del medidor G 65 a G 4000
- Caudales de 5 a 6500 m3/h
- Tamaños nominales de DN 50 a DN 300 (2" a 12")
- Clase de presión PN 16 a PN 100 y ANSI 150, 300 y 600
- Rango de medición 1:20, opcional 1:30 dependiendo de las condiciones de funcionamiento
- Carcasa del medidor hecha de aluminio anodizado de alta resistencia, acero al carbono o acero soldado
- Cabeza índice por defecto hecha de material polimérico estabilizado a los rayos UV de ingeniería, opcional hecha de Aluminio
- Contador giratorio (355°)
- Instalación compacta: no se requiere tubería de entrada recta para perturbaciones de bajo nivel según Estándar OIML, sin embargo, debido a aplicaciones complicadas, recomendamos utilizar un tubo de entrada recto. 2 DN y tubería de salida 1 DN con perturbaciones de bajo nivel. En caso de perturbaciones de alto nivel, Es necesario un tubo de entrada recto adicional de 2DN.
- Posiciones de montaje horizontal y vertical posibles
- Homologaciones según MID (2014/32/UE). OIML, PED (PED 2014/68/UE), ATEX.

Descripción y funcionamiento

El contador de turbina TBQM registra el volumen de funcionamiento mediante un contador mecánico de ocho dígitos. A través de pulsos, el volumen operativo se transfiere a un corrector de volumen electrónico y se convierte a normal o condiciones estándar. La turbina TBQM está aprobada para transferencia de custodia según MID (2014/32/EU) / OIML.

El contador de turbina TBQM es un caudalímetro volumétrico. El flujo del gas a medir hace que la turbina rotor para girar.

El flujo de gas se estrecha en una sección transversal anular, se acelera y se dirige hacia la superficie de marcha suave. Rotor de aluminio. El número de rotaciones es proporcional al volumen de gas atravesado, la frecuencia de Las rotaciones son proporcionales al flujo de gas real. La rotación del rotor está conectada a un reductor de velocidad. tren de engranajes y transmitido por un acoplamiento magnético desde el área de gas al contador de rodillos ajustable en el ambiente atmosférico.

El caudal volumétrico real se puede transmitir a un corrector de volumen electrónico o registrador de datos a través de bajos pulsos de frecuencia (LF) generados por contactos Reed. Se coloca un contacto antimanipulación adicional en el LF unidad de pulsación. Este contacto se activa en presencia de fuertes campos magnéticos en caso d que se utilicen para fines de manipulación.

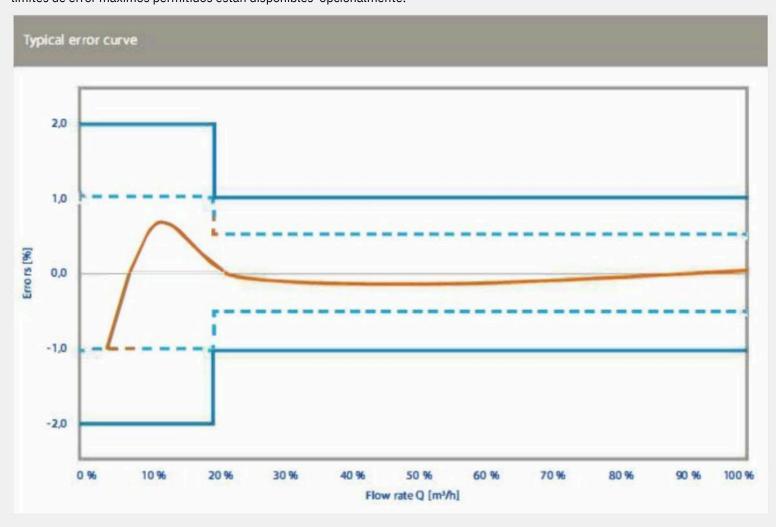
La rotación del rotor también se puede escanear con uno o dos sensores de alta frecuencia (HF). El La señal del sensor HF permite determinar el flujo de gas real en alta resolución. Se utiliza en flujo. computadoras por sí solo o además de la señal LF.

Un daño en el rotor o palas faltantes o torcidas se pueden detectar mediante un patrón de frecuencia modificado.

Especificaciones técnicas	
Temperatura de los gases:	-20 °C a +60 °C , MEDIO: -10 °C a +55 °C
Temperatura ambiente:	-20 °C a +60 °C , MEDIO: -10 °C a +55 °C
Temperatura de almacenamiento:	-30 °C a +60 °C
Presión operacional:	110 bar máx., según especificación de la carcasa
Clase de protección:	IP 67
Materiales:	
Caja del medidor	Aleación de aluminio/acero
Rotor de turbina:	Aleación de aluminio
Cabezal índice del medidor:	Polímero diseñado con estabilización UV, cabezal de aluminio como opción
Aprobación PED:	Hpi/222-103-Q-06
Aprobación ATEX:	Ex II 1 G Ex ia IIC T4 Ga
MEDIO - Aprobación:	T10488 - Certificación NMi
Recomendación OIML:	El contador de gas del tipo TBQM cumple los requisitos de
	OIML R137-1 y 2: 2012 "medidores de gas", confirmado por NMI
Repetibilidad:	<0,1%
Sobrecarga:	Corto plazo hasta 1,25 Qmax
Tasa de cambio de presión:	< 0,35 bares FS
Encimera:	Contador de rodillos mecánico de ocho dígitos
Cabezal de indice del medidor:	Material sintético estándar, aluminio como opción.
Salida de pulso:	1 pulsador LF (contacto Reed) y 1 contacto antimanipulación
	Opción: adicionalmente 1 pulsador de alta frecuencia o 2 pulsadores de alta frecuencia
Conexiones:	
Presión:	1 conexión con rosca ¼" NPT - rosca
Temperatura:	1 termopozo con G ¼ " - hilo (opción)

Medidor de gas de turbina TBQM

Límites de error y curva de error típica


Según E N 1 2261 límites máximos de error permitidos:

Qmín \leq Q<0,2*Qmáx: \pm 2,0 % 0,2*Qmáx \leq Q \leq Qmáx: \pm 1,0 %

A petición especial: Qmín≤Q<0,2*Qmáx: ±1,0 %

 $0,2*Qmáx \le Q \le Qmáx: \pm 0,5 \%$

Todos los medidores de turbina TBQM se calibran inicialmente dentro de los errores de medición estándar dentro del errores máximos permitidos de E N 1 2261 y OIML. Errores de medición reducidos con solo la mitad de los límites de error máximos permitidos están disponibles opcionalmente.

Los contadores de turbina TBQM muestran resultados de medición muy estables y reproducibles.

El cartucho de medición ha sido diseñado para ensamblarse en la carcasa que contiene la presión.

posicionado mediante juntas tóricas suaves. Esto hace que el medidor TBQM sea muy robusto contra cualquier torsión y flexión,

Los medidores pueden soportar mucho más del doble de los esfuerzos de torsión y flexión especificados a través de la instalación tal como se define en la norma EN 1 2261.

La durabilidad de por vida del medidor de turbina TBQM es muy estable debido a las grandes dimensiones y alta rodamientos de bolas de precisión "made in Germany" junto con el mecanizado de alta precisión del cuerpo y todos piezas móviles en máquinas de última generación "made in Germany". Después de mecanizar todas las piezas de aluminio, Especialmente la rueda de la turbina, están equilibradas dinámicamente y anodizadas duras para menos fricción y mayor resistencia al desgaste mecánico o influencias químicas, y una larga vida útil y estabilidad es obtenido.

tensiones resultantes de las tensiones de instalación.

Datos de rendimiento

	Datos de rendimiento											
			Rango de me 1:20 Rango d 1100 bar 810	e presión	Rango de medic Rango de pi 8100 b ar 1 610	esión	Rango de presión				Pérdida c en Qmá y ρ =1bar	
	G-	Qmáx	Qmín	Qmín	Qmín	Qmín	Qmín	Qmín	IC*	LF	Aire	Gas natural
DN	Tamaño	[m3 /h]	[m3 /h]	[m3 /h]	[m3 /h]	[m3 /h]	[m3 /h]	[m3 /h]	[Imp/m3]	[Imp/m3]	(ρ=1,2 kg/m3)	(p=1,2 k g/m3)
50	65	100	5		3.3				105000	10	13.7	8.8
80	100	160		8		5.3		3.2	26000	1	4.4	2.8
80	160	250	12.5		8	ji.	5		26000	1	8.7	5.6
80	250	400	20		13.3		8		26000	1	18.1	11.6
100	160	250		12.5		8.3		5	13500	1	0,5	0.3
100	250	400	20		13.3		8.3		13500	1	9.6	6.2
100	400	650	32,5		20		13		13500	1	19.2	12.4
150	400	650		32,5	T in	21.7		13	5000	1	3.6	2.3
150	650	1000	50		33.3		20		5000	1	10.4	6.7
150	1000	1600	80		53.3		32		5000	1	17.8	11.5
200	650	1000		50		33.3		20	2200	1	1.1	0,7
200	1000	1600	80		53.3		32		2200	1	2.8	1.8
200	1600	2500	125		83.3		50		2200	1	6.5	4.2
250	1000	1600		80		53		32	1900	0.1	6.2	4.0
250	1600	2500	125		83.3		50		1900	0.1	12.5	8.0
250	2500	4000	200		133.3		80		1900	0.1	19.3	12.4
300	1600	2500		125		83		50	1200	0.1	4.6	3.0
300	2500	4000	200		133.3		80		1200	0.1	10.0	6.4
300	4000	6500	325		216,7		130		1200	0.1	20.1	12.9

^{**} en preparación *El valor del pulso puede variar y se determina exactamente durante la calibración

Los medidores de turbina TBQM se fabrican con amplios rangos de medición debido a la precisión mecanizado de las piezas y un proceso de montaje muy reproducible. La medida calibrada estándar El rango para el TBQM es 1:20 en condiciones atmosféricas. Un rango de medición extendido de 1:30 es opcionalmente disponible. Se están preparando rangos de medición de 1:50.

La pérdida de presión del medidor de turbina TBQM se minimiza a través de una entrada optimizada dinámicamente de fluidos. difusor, tolerancias de fabricación muy bajas y rodamientos de bolas de alta precisión y baja fricción.

Las condiciones de flujo optimizadas no permiten una tubería de entrada recta para perturbaciones de bajo nivel y solo 2 D N adicioales. Tubería de entrada recta bajo perturbaciones severas según los estándares OIML. Medidores de turbina T BQM

Las carcasas se fabrican de forma estándar con bridas de cara e levada (RF) según E N 1 0921 o

ANSI B 1 6.5 p ara clase 150/300/600 con una presión máxima de funcionamiento de 1 10 b ar/ 1 1 M Pa.

Más detalles técnicos, especialmente para la puesta en servicio y operación, consulte el manual de operación de el medidor de turbina TBQM.

^{*} El número absoluto de pulsos depende del tamaño del medidor y del medidor en sí lo declarado Los valores son de tamaño típico. Los valores exactos determinados por la calibración del medidor se encuentran en la Placa de nombre.

Medidor de gas de turbina TBQM

Materiales de la vivienda

DN	Clase d e p resión									
[mm]	PN 1 6	PN 25	PN 40	PN 6 3	PN 1 00	ANSI 1 50	ANSI 3 00	ANSI 6 00		
50	Aluminio/Acero al carbono	Acero al carbono	Acero carbono	Acero al carbono						
80	Aluminio/Acero al carbono	Acero al carbono	Acero carbono	Acero al carbono						
100	Aluminio/Acero al carbono	Acero al carbono	Acero carbono	Acero al carbono						
150	Aluminio/Acero al carbono	Acero al carbono	Acero carbono	Acero al carbono						
200	Aluminio/Acero al carbono	Acero al carbono	Acero carbono	Acero al carbono						
250	Acero carbono	Acero carbono	Acero carbono	Acero al carbono						
300	Acero carbono	Acero carbono	Acero carbono	Acero al carbono						

Diseño de medidor

La carcasa que contiene la presión (1) e s m uy robusta contra fuerzas de torsión o flexión debido a la gran cruz

secciones. La rueda de turbina de aluminio (2) se mecaniza a partir de material completo en una máquina de 4 ejes, dinámicamente

Equilibrado con precisión y anodizado duro. La computadora optimiza el perfil de las palas de la turbina en

La combinación con el enderezador de flujo de entrada optimizado de dinámica de fluidos (5) proporciona una muy estable

característica de medición también en condiciones de funcionamiento de alta presión. Los rodamientos de alta precisión.

"Hecho en Alemania" con un juego mínimo en los rodamientos garantiza un funcionamiento suave de la rueda de la turbina con una carga elevada

capacidad. El cartucho de medición (7) se coloca mediante juntas tóricas en la carcasa que contiene la presión. Este diseño

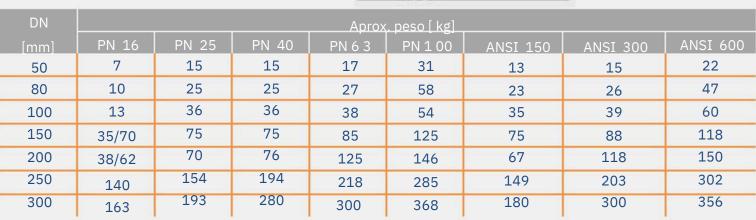
La característica también crea una sala circular con presión de funcionamiento estática absoluta para una presión muy precisa.

medición sin influencias dinámicas del flujo. La lubricación con aceite de los rodamientos se garantiza mediante

la bomba de lubricación (6). El giro de la rueda de la turbina se transmite a través de un tren de engranajes de baja fricción y un

acoplamiento magnético estable a la presión y hermético al contador mecánico de ocho digitos (4) con un

clase de protección ambiental de IP 6 5.

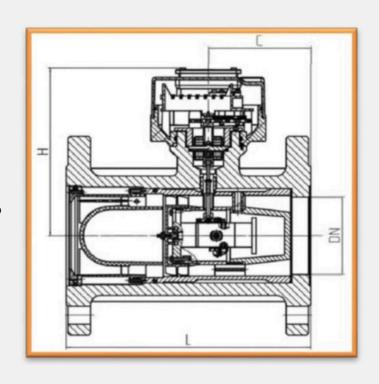

El medidor de turbina TBQM se puede instalar horizontal y verticalmente hacia arriba o hacia abajo debido al giro de 3550 C . cabeza índice capaz. El interruptor de baja frecuencia (LF) intercambiable en combinación con un interruptor antimanipulación El contacto proporciona la conexión eléctrica a un corrector de volumen electrónico y a un posible A MR adicional. dispositivo. Se h a pretendido que el diseño completo del medidor de turbina TBQM sea m uy robusto en combinación

- 1. carcasa que contiene presión
- 2. rueda de turbina
- 3. LF Pulser y unidad antimanipulación

con el mayor rendimiento de medición.

- 4. cabezal índice y contador de 8 dígitos
- 5. enderezador de flujo
- 6. bomba de aceite lubricante
- 7. cartucho de medición

Dimensiones, pesos y conexiones.



Dimensiones, pesos y conexiones.

, IIII	Dimensiones, pesos y conexiones.								
DN	Clase de presión	Dimensiones de la vivienda							
[mm]	Clase de presion	DN[mm]	Alto[mm]	C[mm]	Largo[mm]				
	PN 1 6	52	163	75	150				
50	PN 25, PN 40, PN 63, Clase 150, Clase 300	52	168	75	150				
	Clase 6 00	52	185	75	150				
	PN16	81	170	101	240				
80	PN 25, PN 40, PN 63, Clase 150, Clase 300	81	189	101	240				
	Clase 600	81	204	101	240				
100	PN16	101	180	120	300				
	PN 25, PN 40, PN 63, Clase 150, Clase 300, Clase 600	101	199	120	300				
	PN 1 6	151	200	180	450				
150	PN 25, PN 40, PN 63, Clase 150, Clase 300, Clase 600	151	200	180	450				
200	PN 16, PN 25, PN 40, PN 63, Clase 150, Clase 300, Clase 600	201	240	255	600				
250	PN 16, PN 25, PN 40, PN 63, Clase 150, Clase 300, Clase 600	251	267	250	750				
300	PN 1 6, PN 25, PN 40, PN 63, Clase 150, Clase 3 00, Clase 600	301	293	308	900				

Se fabrican c arcasas para contadores de turbina TBQM. de forma e stándar con bridas de cara elevada (RF) según E N 1 0921 o ANSI B 1 6.5 para clase 150/300/600 c on una presión máxima de funcionamiento de 1 10 b ares/ 1 1 MPa.

Más detalles técnicos, especialmente para la puesta en servicio y funcionamiento, consulte el manual de funcionamiento del medidor de turbina TBQM.

Conexiones

DN	Bridas con agujeros roscados								
			EN 1 0921	ANSIB 1 6.5					
[mm]	PN 16	PN 25	PN 40	PN 63	PN 100	ANSI 150	ANSI 300	ANSI 600	
50	4xM16	4xM16	4xM16	4xM20	4xM24	4xM16	8 X M16	8 X M16	
80	8xØ18	8xØ18	8xØ18	8xØ22	8xM24	4xØ19	8 XØ22	8 X M20	
100	8xØ18	8xØ22	8xØ22	8xØ26	8xØ30	8xØ19	8 X Ø22	8 X Ø26	
150	8xØ22	8xØ26	8xØ26	8xØ33	12 xØ33	8xØ22	12 XØ22	12 X Ø29	
200	12xØ22	12xØ26	12xØ30	12xØ36	12 xØ36	8xØ22	12xØ26	12 X Ø32	
250	12xØ26	12xØ30	12xØ33	12xØ36	12 xØ39	12xØ26	16xØ29	16xØ35	
300	12xØ26	12xØ30	16xØ33	16xØ36	16xØ42	12xØ26	16xØ32	20xØ35	

MEDIDORES Y CONTROLES INDUSTRIALES

Lic. Roberto Rodriguez Avila Director Comercial

81 8362 5371

proberto.rodriguez@medidoresycontroles.com www.medidoresycontroles.com

81 1004 8169 robertoa.rodriguez@medidoresycontroles.com

www.medidoresycontroles.com

marco.pineda@medidoresycontroles.com

www.medidoresycontroles.com

www.medidoresycontroles.com